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Abstract

In this paper, we characterize the synchronization phenomenon of hyperchaotic
scalar nonlinear delay dynamics in a fully-developed chaos regime. Our
results rely on the observation that, in that regime, the stationary statistical
properties of a class of hyperchaotic attractors can be reproduced with a
linear Langevin equation, defined by replacing the nonlinear delay force by
a delta-correlated noise. Therefore, the synchronization phenomenon can
be analytically characterized by a set of coupled Langevin equations. We
apply this formalism to study anticipated synchronization dynamics subject
to external noise fluctuations as well as for characterizing the effects of
parameter mismatch in a hyperchaotic communication scheme. The same
procedure is applied to second-order differential delay equations associated
with synchronization in electro-optical devices. In all cases, the departure with
respect to perfect synchronization is measured through a similarity function.
Numerical simulations in discrete maps associated with the hyperchaotic
dynamics support the formalism.

PACS numbers: 05.45.Xt, 05.45.Jn, 05.40.Ca, 05.45.Vx

1. Introduction

In the last decades, synchronization of chaotic dynamics became a subject that has attracted
a lot of attention [1–7]. In fact, from a theoretical point of view, this phenomenon seems to
contradict the inheriting sensibility to initial conditions of chaotic dynamics. On the other hand,
the interest in this kind of phenomenon comes from the possibility of using the unpredictable
chaotic trajectories as a carrier signal in communication channels. In this context, high-
dimensional systems with multiple positive Lyapunov exponents, i.e., hyperchaotic dynamics
[8], have been proposed as a resource for improving the security in the communication schemes.
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Synchronization of hyperchaotic systems has therefore also become an area of active research
[9–13].

Chaotic dynamics described by differential delay equations arise in the description of
many different kinds of situations, such as physiology [14, 15], biology [16], economy [17],
laser physics [18–22], etc. As is well known, a high-dimensional chaotic attractor characterizes
these infinite-dimensional systems. It has been shown that the Lyapunov dimension of the
attractor is proportional to the characteristic delay time of the dynamics [22–25]. Therefore,
‘synchronization of hyperchaotic nonlinear delay dynamics’ has also been extensively explored
from both a theoretical point of view as well as a resource for communication schemes
[26–29]. A new aspect introduced in this case is the possibility of synchronizing two chaotic
dynamics with a time shift, giving rise to the phenomenon of anticipated [30–40] (or retarded)
synchronization, i.e., one of the chaotic systems (slave or receiver system) follows the chaotic
trajectory of the other one (master or transmitter system) with an advanced (or retarded) time
shift.

In any real experimental setup where chaotic synchronization is observed one is naturally
confronted with two undesirable effects that avoid reaching a perfectly synchronized regime.
The characteristic parameters of both systems are not exactly the same, small parameter
mismatch may induce clearly observable effects [41–43]. Also, departure with respect to the
perfectly synchronized manifold may also be due to intrinsic noise fluctuations present in
both systems [44, 45]. Both effects have been analyzed in the literature. Nevertheless, due to
the chaotic character of the dynamics, in general it is hard to obtain an analytical estimation of
these effects, which in fact may depend on the specific nature of the chaotic systems as well
as on the coupling scheme used to achieve synchronization.

The aim of this paper is to provide a simple analytical description of the phenomenon of
synchronization of hyperchaotic delay dynamics, considering realistic situations such as the
presence of parameter mismatch as well as the presence of intrinsic noise fluctuations in both
synchronized systems. We demonstrate that this goal can be achieved when the synchronized
dynamics are in a fully-developed chaos regime [46]. In this situation, the corresponding
chaotic attractor does not have any stable periodic orbit and its basin of attraction fills out almost
the whole available domain. These properties suggest that the nonlinear delay contribution
terms of the chaotic dynamics may be statistically equivalent to an ergodic noise source. As
demonstrated in [47, 48], this property, in a long-time limit and depending on the characteristic
parameter values, is in fact valid for a broad class of scalar delay dynamics. Therefore, our
main idea consists in replacing the full set of coupled delay chaotic evolutions that lead
to synchronization by a set of correlated Langevin evolutions obtained from the original
chaotic ones after replacing the nonlinear delay contributions by a noise term. Since the final
Langevin equations are linear, their statistical properties can be obtained in an exact analytical
way, providing a simple framework for characterizing the synchronization phenomenon.
Departure with respect to perfect synchronization is characterized in terms of a similarity
function [49], which measures the degree of correlation between the quasi-synchronized
dynamics.

The paper is organized as follows. In section 2, we review the conditions under which
hyperchaotic delay dynamics can be represented by a Langevin dynamics. In section 3, we
analyze the phenomenon of anticipated synchronization when perturbed by external additive
noises. In section 4, we analyze the effect of parameters mismatch in a hyperchaotic
communication scheme [26]. In section 5, we study a set of second-order differential
delay equations associated with an electro-optical laser device [43] under the effect of
parameter mismatch and under the action of external additive noises. In all cases, we
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present numerical simulations that sustain our theoretical results. In section 6, we give the
conclusions.

2. Langevin approach to hyperchaotic delay dynamics in the fully-developed

chaos regime

We will consider scalar nonlinear delay evolutions with the structure

u̇(t) = −γ u(t) + βf [u(t − T )] + I(t). (1)

Here, γ defines a dissipative timescale and T is the characteristic time delay. The parameter
β controls the weights of the nonlinear function f (x), which is assumed to be oscillatory or
at least exhibiting many different extrema1. The term I(t) represents an extra inhomogeneous
contribution that may corresponds to a stationary Gaussian white noise (section 3), a
deterministic signal (section 4) or even it may be a linear functional of the process u(t)

(section 5).
The parameter βT may be considered as a complexity control parameter. In fact, when

βT � 1, the dynamic reaches a fully-developed chaos regime, where the stationary statistical
properties of the corresponding attractor can be reproduced with a linear Langevin equation
[47, 48]. This property can be understood by integrating equation (1), in the long-time limit
(γ t � 1), as

ũ(t) ≈
∫ t

0
dt ′ e−γ (t−t ′)f [βũ(t ′ − T ) + Ĩ(t ′ − T )], (2)

where ũ(t) = [u(t) − Ĩ(t)]/β, and Ĩ(t) is defined by Ĩ(t) ≡ ∫ t

0 dt ′ e−γ (t−t ′)I (t ′). Then, by
writing the integral operation over f (x) as a discrete sum,

∫ t

0 dt ′g(t ′) → ∑
j dt ′g(j dt ′),

one realizes that ũ(t) may be considered as the result of the addition of many ‘statistically
independent’ contributions. This last property follows from the fact that f [βx] oscillates so
fast that it behaves as a driving random force. The characteristic correlation time (in units of
time 1/γ ) of the nonlinear force f [βx] is of order γ /β [47, 48]. When the correlation time
is the small timescale of the problem, i.e., much shorter than the characteristic delay time,
γ /β � γ T , and consistently much shorter than the characteristic dissipative time, γ /β � 1,

the statistical independence of the different contributions follows. Note that this last property
is independent of the structure of the inhomogeneous term Ĩ(t), which only introduce a shift
in the argument of f [βx].

From the previous analysis, in the parameters region βT � 1 and γ /β � 1, the central
limit theorem [50] tells us that ũ(t) is a Gaussian process. Due to this characteristic, this
regime is also named Gaussian chaos. Only when Ĩ(t −T ) is a nonlinear function (functional)
of u(t) [48], the long-time statistic may depart from a Gaussian one.

The lack of correlation between the different contributions of the ‘chaotic force’
f [βũ(t − T ) + Ĩ(t − T )], allows us to introduce the following ansatz. In the fully-developed
chaos regime, ‘the long-time statistical properties’ of u(t) can be equivalently obtained from
equation (2) after replacing the chaotic force by a noise contribution (βf [ũ(t−T ) + Ĩ(t−T )] →
η(t − T )), delivering the Langevin equation

u̇(t) = −γ u(t) + η(t − T ) + I(t). (3)

1 There exist cases where this condition is not satisfied, as for example for the Mackey-Glass dynamic [14, 48],
which arise in the context of white-blood-cell production.
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The noise η(t) must have the same statistical properties as the delayed chaotic force. Since
we are restricting our analysis to the Gaussian chaos regime, it is sufficient to map the first
two statistical moments2

η(t) = lim
t→∞ βf [u(t)], (4)

η(t + τ)η(t) = lim
t→∞ β2f [u(t + τ)]f [u(t)]. (5)

The limit operation (limt→∞) is introduced because the statistical mapping is only valid in
the long-time regime. The overbar symbol denotes an average over realizations obtained
from equation (1) with different initial conditions. Equivalently, since the chaotic attractor
is ergodic (by definition of the fully-developed chaos regime) when the inhomogeneous term
is statistically stationary [50], this average can also be considered as a time average. For
example, limt→∞ f [u(t)] = limt→∞(1/t)

∫ t

0 dt ′f [u(t ′)].
In agreement with the lack of correlation between the different contributions of the chaotic

force, η(t) can be approximated by a delta-correlated noise,

η(t)η(t ′) − η(t) η(t ′) = Aδ(t − t ′). (6)

This white noise approximation applies for time intervals (t − t ′) larger than the characteristic
time correlation (γ /β) (in units of time 1/γ ) of the chaotic force [47, 48], i.e., γ (t − t ′) >

(γ /β).

The coefficient A measures the amplitude of f [u(t)]. Clearly, A must be proportional to
β2. Nevertheless, its exact value is not universal and depends on the specific function f (x) [47]
as well as on the parameters that define the inhomogeneous term (see the following section).

When I(t) is defined by an external driving force, we will assume that

[η(t) − η(t)]I(t ′) = 0, (7)

i.e., the noise fluctuations representing the chaotic force and the inhomogeneous term are
statistically uncorrelated. The plausibility of this assumption follows from the fact that the
white nature of η(t) only relies on the rapid oscillating nature of f [βx] while it is not affected
by the shift introduced by the functional Ĩ(t). Under this condition, the inhomogeneous
contribution only affects the mean value of the Gaussian profile associated with u(t).

Finally, we will assume that η(t) = 0. The validity of this condition only depends on the
specific properties of the nonlinear chaotic force. In fact, the rapid oscillating nature of f [βx]
allows us to discarding the asymmetry introduced by Ĩ(t) (equation (2)). As will become
clear in the following section, the generalization to the case limt→∞ βf [u(t)] 	= 0 can also be
worked straightforwardly.

With the noise correlation equation (6), the stochastic evolution equation (3) becomes
a (driven) Orstein–Ulenbeck process [50]. The statistical equivalence in the stationary and
fully-developed chaos regimes of the deterministic evolution equation (1) and the Langevin
equation (3), (without the inhomogeneous term) was proved in [47, 48]. Clearly, this
stochastic representation does not provide any new information about the chaotic dynamics.
Nevertheless, in the following sections we will use this equivalence for formulating a simple
framework that allows us to get an analytical characterization of the chaotic synchronization
phenomenon for different realistic circumstances.

2 Strictly, the mapping defined by equations (4) and (5) is sufficient for Markovian Gaussian process. The Markovian
property is guaranteed by the validity of the white noise approximation (equation (6)). On the other hand, we note
that independently of the probability distribution associated with η(t), by appealing to the central limit theorem [50],
the correlation equation (6) guarantees that, in the long-time regime, equation (3) always converges to a Gaussian
process.
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3. Anticipated synchronization subject to external additive noises

In this section we will apply the previous Langevin representation of a hyperchaotic attractor
to analyze the phenomenon of anticipated synchronization [30–32] in the presence of external
noise sources. We consider a complete replacement scheme [39], defined by the coupled
chaotic evolutions

ẋ(t) = −γ x(t) + βf [x(t − T )] + ξx(t), (8a)

ẏ(t) = −γy(t) + βf [x(t)] + ξy(t). (8b)

In this context, the variables x(t) and y(t) are referred as master and slave variables,
respectively. As before, γ is a constant dissipative rate and β measures the weight of the
delay-nonlinear contribution f (x).

We have considered external noise sources, defined by the master and slave noises ξx(t)

and ξy(t) respectively. We assume that their mean values are null 〈ξz(t)〉 = 0, where z = x, y

and 〈· · ·〉 denotes average over noise realizations. Furthermore, we assume that both noises
are Gaussian, with correlations

〈ξz(t)ξz′(t ′)〉 = Azz′δ(t − t ′). (9)

The ‘diffusion’ coefficients satisfy the positivity constraint AxxAyy − AxyAyx � 0,

(Axy = Ayx) [50]. These definitions allow us to cover the case where both the master
and slave variables are affected by intrinsic uncorrelated fluctuations, Axy = 0, as well as
the case of correlated fluctuations Axy > 0. This last situation may be easily produced in any
experimental setup. In particular, for Axx = Ayy = Axy, the noises that drive the master
and slave dynamics are exactly the same, i.e., equation (8) with ξx(t) = ξy(t). This property
follows by diagonalizing the matrix of diffusion noise coefficients {{Axx,Axy}, {Axy,Ayy}}.

As is well known, in the absence of the external noises ξx(t) and ξy(t), the master–slave
dynamics equation (8), after a time transient of order 1/γ, reach the synchronized manifold
x(t + T ) = y(t). Therefore, the slave variable anticipates the behavior of the master variable.
The achievement of this state is clearly affected by the presence of the external noises. The
degree of departure with respect to the perfectly synchronized manifold can be measured with
a similarity function, defined as [49]

S(τ) ≡ lim
t→∞

[
〈[x(t + τ) − y(t)]2〉
[〈x2(t)〉〈y2(t)〉]1/2

]1/2

. (10)

As before, the overbar denotes an average with respect to the system initialization or
equivalently a time average in the asymptotic regime. In the absence of the external noises,
this object satisfies S(T ) = 0, indicating that the perfectly synchronized state x(t + T ) = y(t)

was achieved. In the presence of the noises, we expect S(T ) > 0.

The characterization of the behavior of the similarity function S(τ) from the evolution
equation (8) is in principle a highly non-trivial task. The major complication come from
the chaotic nature of the master and slave dynamics. Even in the absence of the external
noises, in general it is impossible to get an analytical expression for the similarity function.
Nevertheless, if both dynamics are in the fully-developed chaos regime, from the previous
section, we know that a simpler representation may be achieved. The Langevin approach to
equation (8) reads

ẋ(t) = −γ x(t) + η(t − T ) + ξx(t), (11a)

ẏ(t) = −γy(t) + η(t) + ξy(t). (11b)
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Note that this equation corresponds to equation (8) with the replacement f [x] → η and
maintaining the respective time arguments. As before, the effective noise η(t) is defined by
the correlation equation (6). Furthermore, we will assume that η(t) = 0. We will deal the
case, η(t) 	= 0 at the end of this section.

While the nature of equations (11) is completely different to that of equations (8), in
the asymptotic time regime these Langevin equations, without the external noises ξx(t) and
ξy(t), also reach a perfectly synchronized state. In fact, without the external noises, from
equation (11) it is possible to write (d/dt)[x(t)−y(t −T )] = −γ [x(t)−y(t −T )], implying
that after a time transient of order (1/γ ) the manifold x(t + T ) = y(t) is reached. From
the previous section we know that the statistical properties of the corresponding master
process equations (8a) and (11a) are the same. Then, we estimate the similarity function
equation (10) associated with the nonlinear evolution equation (8) from the simpler linear
Langevin evolutions equation (11).

In the long-time limit (γ t � 1), the master and slave Langevin evolutions can be
integrated for each realization of the noise η(t), which represent the nonlinear force, and
external noises [ξx(t) and ξy(t)] as x(t) ≈ ∫ t

0 dt ′ e−γ (t−t ′)[η(t ′ − T ) + ξx(t
′)], and as

y(t) ≈ ∫ t

0 dt ′ e−γ (t−t ′)[η(t ′) + ξy(t
′)], respectively. By using the correlation equations (6)

(with η(t) = 0) and (9), it follows

lim
t→∞〈x2(t)〉 = A + Axx

2γ
, lim

t→∞〈y2(t)〉 = A + Ayy

2γ
. (12)

In a similar way, we get

lim
t→∞〈x(t + τ)y(t)〉 = A

2γ
exp[−γ |τ − T |] +

Axy

2γ
exp[−γ |τ |].

Therefore, the similarity function reads

S(τ) =
√

2

[(
1 + Axx+Ayy

2A
) − (

e−γ |τ−T | + Axy

A e−γ |τ |)(
1 + Axx

A
)1/2(

1 + Ayy

A
)1/2

]1/2

. (13)

This is one of the main results of this section. Note that this expression only depends
on one free parameter, i.e., the amplitude of the chaotic force A. On the other hand, this
result relies in assuming the absence of any statistical correlation between the noise η(t)

representing the chaotic force and the external noises {ξx(t), ξy(t)}. Consistently with the
delta correlated nature of both contributions, equations (6) and (9), we have also calculated
the extra contributions to equation (13) that appear by assuming a delta cross correlation
between both kinds of objects. Nevertheless, the numerical simulations presented along the
paper contradict the existence of any extra correlation, supporting the (previous) arguments
that explain the statistical independence between the chaotic force and any external source,
equation (7).

From equation (13) one can analyze different limits. In the absence of external noise we
get

S(τ) =
√

2(1 − exp[−γ |τ − T |])1/2. (14)

Note that this expression does not depend on the chaotic force amplitude A, it is defined
only in terms of the local dissipation rate γ and the delay T . Consistently, S(τ) satisfies the
anticipated synchronization condition S(T ) = 0. When the external noise sources are taken
in account, we get

S(T ) =
√

2

[ Axx+Ayy

2A − Axy

A e−γ T(
1 + Axx

A
)1/2(

1 + Ayy

A
)1/2

]1/2

. (15)

6
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This value measures the departure with respect to the perfectly synchronized manifold
x(t + T ) = y(t). Note that the correlation Axy always decrease the value of S(T ). This
effect is exponentially diminished when increasing γ T .

3.1. Anticipated synchronization of delay maps

The previous results can be extended to the case of anticipated synchronization in discrete
delay maps. We consider the maps that follow after discretizing the time variable in
equation (8), t = nδt, and integrating both the master and slave evolutions up to first order in
the discrete time step δt. We get

xn+1 = axn + bf (xn−n0) + ξx
n , (16a)

yn+1 = ayn + bf (xn) + ξy
n . (16b)

Here, n0 defines the characteristic delay step and the ‘dissipative’ rate satisfies 0 < a < 1.

For each n, ξx
n and ξ

y
n , are independent Gaussian distributed variables with

〈
ξz
nξ z′

m

〉 = Azz′δnm,

(z = x, y), subject to the constraint AxxAyy−AxyAyx � 0, (Axy = Ayx) [50]. The parameters
of the continuous time evolution equation (8) and the discrete map equation (16) are related
by

γ = 1 − a

δt
, β = b

δt
, T = n0δt, Azz′ = Azz′

δt
. (17)

For the discrete map, the similarity function equation (10) is defined as

Sm = lim
n→∞

⎡
⎣ 〈(xn+m − yn)2〉√〈

x2
n

〉〈
y2

n

〉
⎤
⎦

1/2

. (18)

As we will show in the next examples, this object can be fitted by equation (13) with the
mapping equation (17). This property is valid when the discrete map provides a good
approximation to the continuous time evolution. In fact, when a ≈ 1, i.e., γ δt � 1, the
map equation (16) can be read as a numerical algorithm for simulating the continuous time
evolution equation (11). Nevertheless, we remark that equation (16) can also be analyzed
without appealing to the parameter mapping equation (17), i.e., the Langevin approach can
also be formulated for discrete time dynamic. Sm can be estimated after replacing the chaotic
force in equation (16) by a discrete noise, f (x) → ηn, with ηn = 0 and ηnηm = Aδnm. We get

lim
n→∞

〈
x2

n

〉 = A + Axx

1 − a2
, lim

n→∞
〈
y2

n

〉 = A + Ayy

1 − a2
. (19)

The master–slave correlation reads

lim
n→∞〈(xn+myn)〉 = 1

1 − a2
(Aa|m−no| + Axya

|m|). (20)

Then, the (discrete) similarity function reads

Sm =
√

2

[(
1 + Axx+Ayy

2A

) − (
a|m−no| + Axy

A
a|m|)(

1 + Axx

A

)1/2(
1 + Ayy

A

)1/2

]1/2

. (21)

Consistently, by using equation (17) and the mapping between the chaotic force amplitudes

A = Aδt−1, (22)

from equation (21) to first order in δt, one recovers equation (13). Furthermore, the conditions
that guarantee the validity of the Langevin representation in the continuous time case,
i.e., βT � 1 and γ /β � 1, from the mapping equations (17), here read bn0 � 1 and
(1 − a)/b � 1.

7
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Figure 1. Similarity function of the coupled delay maps equation (23) without noise, Axx =
Ayy = Axy = 0. The parameters are n0 = 15, b = 3, and a = 0.975 (squares) and a = 0.9
(circles). The lines correspond to the fitting equation (14) joint with the mapping equation (17)
(with δt = 1) indistinguishable from equation (21). The inset corresponds to the stationary
probability distribution P(x) of the process xn (with a = 0.9).

3.2. Numerical results

To check the validity of the previous results, we consider an Ikeda-like delay-differential
equation [18, 19], i.e. equation (8) with f [x] = sin(x). Its associated discrete map
(equation (16)) read

xn+1 = axn + b sin(xn−n0) + ξx
n , (23a)

yn+1 = ayn + b sin(xn) + ξy
n . (23b)

To obtain the following results, we generate a set of realizations from the map
equation (23) by considering different random initials conditions in the interval (−π, π)

for both, the master and the slave variables. By averaging over this set of realizations (≈104),

we determine numerically the similarity function equation (18). To check the ergodic property
of the corresponding chaotic attractor, we repeated the numerical calculations by averaging
over time a single trajectory with an arbitrary set of initial conditions. Consistently, we
obtained the same results and characteristic behaviors.

In figure 1 we show the similarity function when the external noises are absent, i.e., the
similarity corresponding to the deterministic map. In agreement with this condition, we note
that Sn0 = 0, implying that the manifold xm+n0 = ym characterizes the asymptotic behavior.
Furthermore, we find that both the expressions for the continuous time case (equation (13)
with the mapping equation (17)), as well as the similarity function of the map (equation (21))
are indistinguishable from each other (in the scale of the graphic) and both correctly fit the
numerical behavior. In the inset, we show the stationary probability distribution of the master
process xn. In agreement with our considerations, this distribution can be fit with a Gaussian
distribution. From its width, and by using equation (19) (or equation (12)) we estimated the
value of the chaotic force amplitude, A ≈ 3.5.

8
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Figure 2. Similarity function of the coupled delay maps equation (23) subject to external Gaussian
noise fluctuations. The parameters are n0 = 15, a = 0.9 and b = 3. The noise parameters are
Axx = Ayy = 0.25 and Axy = 0. The line corresponds to the fitting equation (14) joint with
the mapping equation (17) (with δt = 1) indistinguishable from equation (21). The chaotic noise
amplitude results A ≈ 3.5. The inset corresponds to a master (xn, full line) and slave (yn, dotted
line) realizations.

In the absence of the noises, we corroborate that by taking the function f [x] = sin(x +φ),

independently of the value of the phase φ, the same statistical behaviors follow. This result
confirms the arguments presented in the previous section (equation (2)) about the statistical
invariance of the chaotic force under a shift of its argument.

In figure 2 we show the similarity function when the master and slave dynamics are
affected by two uncorrelated external noises. As expected, we found that Sn0 > 0 (n0 = 15).

In the inset, we show a characteristic master–slave realization. Even in the presence of the
external noises, both trajectories are approximately the same (the slave anticipate the master
trajectory). In contrast with the previous figure, here the fitting to the similarity function
depends explicitly on the chaotic force amplitude A. We found that the value of A that
provides the best fitting is consistent with that found for the deterministic map (figure 1), i.e.,
A ≈ 3.5. Then, in this case, the inequality A � {Axx,Ayy} is satisfied, implying that the
fluctuations induced by the determinist chaotic dynamic are much larger than those induced
by the external noise sources.

Maintaining all the parameter values corresponding to figure 2, we analyzed the case
Axx = Ayy = Axy. In this situation, the noises that drive the master and slave dynamics are
exactly the same, i.e., equation (23) with ξx

n = ξ
y
n (as in the continuous time case, this property

follows by diagonalizing the matrix of diffusion noise coefficients {{Axx,Axy}, {Axy,Ayy}}).
We found that the similarity function is almost indistinguishable from that of figure 2.
Independently of the external noise correlations, in both cases our approach provides a very
good fitting of the numerical results.

In figure 3, by maintaining the parameters of the deterministic map, i.e., (a, b, n0), we
increased the amplitude of the external noises, such that {Axx,Ayy} ≈ A. Then, the external
noise-induced fluctuations are of the same order as the intrinsic chaotic dynamical fluctuations.
Even in this limit, our approach provides an excellent fitting of the numerical results. Both,
the case of uncorrelated noises (Axy = 0 with Axx = Ayy) and the case of completely
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Figure 3. Similarity function of the coupled delay maps equation (23) driven by different noises.
The circles correspond to Axx = Ayy = 3.5 and Axy = 0, while the squares correspond to
Axx = Ayy = Axy = 3.5. The parameters of the map are the same as in figure 2. The
lines correspond to the fitting equation (14) joint with the mapping equation (17) (with δt = 1)
indistinguishable from equation (21). The chaotic noise amplitude results A ≈ 4.3.

correlated noises (Axx = Ayy = Axy) are considered. In both situations, since the external
noise amplitudes are larger than in figure 2, the value of Sn0 increases, indicating a weaker
(anticipated) synchronization between the master and slave dynamics.

In the case of completely correlated noises, Axx = Ayy = Axy, the similarity function
develops two (local) minima, one at m = n0 and other at m = 0. This feature follows from
the competition between two different synchronizing mechanisms, induced by the chaotic
dynamics and the external noises, respectively. In fact, as the noise that drives the master and
slave dynamics is the same, its action tends to synchronize both dynamics without any time shift
(see equation (23) with ξx

n = ξ
y
n ), producing the dip at m = 0. In agreement with this argument,

from equation (21) (or equivalently equation (13)) one can deduce that only one minimum at
m = 0 will be appreciable in the similarity function when A � Axx = Ayy = Axy, i.e., in the
limit of high-noise intensity.

As in figure 2, the similarity function depends on the amplitude A of the chaotic force.
Here, the best fitting to the similarity function is obtained with A ≈ 4.3. This value is
larger than those associated with the deterministic dynamics (figure 1) or the case of weak
external noises (figure 2). Then, in general it is necessary to consider that the chaotic force
amplitude A is also a function of the external noise intensities, A = A[{f (x), b}, Axx, Ayy)].
We remark that in concordance with the Langevin representation, the value of A determined
from equations (19)–(21) is the same. By using the parameters of figure 3, we found a
moderate dependence on the external noise intensities, i.e., the maximal variation of A with
the amplitude of the noises does not exceed 30% of the deterministic map value (figure 1,
A ≈ 3.5). The dependence is smooth but non-monotonous. We found that A saturates to a
fixed value (A ≈ 4.5) when increasing the external noise amplitudes, A < {Axx,Ayy}.

3.3. Chaotic force with a non-null average value

Our previous theoretical calculations rely on the assumption that the average (over
realizations or its stationary time average) of the chaotic force is zero, i.e., f [x(t)] = 0.

10
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When the dynamic, that does not include the nonlinear contribution, is purely dissipative
(equation (1) with f (x) → 0,) the validity of this assumption requires that f (x) takes
symmetrically positive and negative values. Functions that do not satisfy this property also
arise in real experimental setups [21, 26, 43]. In these cases, due to the pure dissipative
nature of the evolution equation (8) (or equation (16)), in the long-time limit the master–slave
realizations will fluctuate around a non-null fixed value.

This situation can be managed by writing f (x) = [f (x)−f (x)]+f (x). Then, the previous
theoretical calculations can be easily extended by replacing [f (x) − f (x)] → η(t) (with
η(t) = 0) and by maintaining the extra contribution f (x) in the final Langevin representation.
For example, taking the functions f (x) = sin2(x) or f (x) = cos2(x) in equation (8), from
the Langevin representation equation (11), it is possible to deduce that in the fully-developed
chaos regime the master–slave realizations will fluctuate around β/(2γ ).

When the dynamic without the nonlinear contribution can by itself induce symmetric
dynamical oscillations, the symmetry requirement on the function f (x) may be eliminated
(see section 5).

4. Effect of parameters mismatch in a hyperchaotic communication scheme

Hyperchaotic delay dynamics may be used as a resource for secure encoded communication.
Different schemes have been proposed, in all the cases, it is argued that the security of the
communication channel may be improved by increasing the dimension of the hyperchaotic
attractor. Here, we study the dynamics [26]

ẋ(t) = −γ x(t) + βf [x(t − T )] + M(t), (24a)

ẏ(t) = −γ ′y(t) + β ′f [x(t − T ′)]. (24b)

The variable x(t) is the carrier signal where the message is encoded. The external feed M(t)

is defined by M(t) = [dm(t)/dt + γm(t)], where m(t) is the message to be transmitted.
The variable y(t) is the receiver. It is easy to demonstrate that in the stationary regime
the state x(t) − y(t) = m(t) is reached, implying that the receiver is able to unmask the
message encoded in the hyperchaotic dynamics of x(t). This condition is only satisfied when
the characteristic parameters of the transmitter and receiver evolutions (equation (24)) are the
same, i.e., γ ′ = γ, β ′ = β and T ′ = T .3 In any real experimental situation, it is expected
that this condition is not fulfilled, i.e., the decodification of the message is performed in the
presence of an unavoidable (finite) parameter mismatching. For simplicity, in the present
section we will not consider the action of any external noise perturbation source.

In order to achieve a general characterization of the influence of the parameters mismatch,
we take M(t) = 0. As in the previous section, we will use the similarity function S(τ)

(equation (10)) as a measure of the degree of synchronization between the emitter and receiver
variables.

When the transmitter dynamics is in the fully-developed chaos regime, we can extend the
Langevin approach to the present situation. In order to estimate the similarity function, we
replace the chaotic coupled evolution equation (24) by the Langevin equations

ẋ(t) = −γ x(t) + η(t − T ), (25a)

3 It is also possible to consider extra parameters mismatch in the transmitter–receiver nonlinearities, as for example
the phase φ in f (x) = sin(x + φ) [43]. This case can be worked out in the Langevin representation in a similar way
by discomposing the sin function in two shiftless terms and considering their respective symmetries properties. For
simplicity, we will not consider this case.

11



J. Phys. A: Math. Theor. 41 (2008) 445001 A A Budini

ẏ(t) = −γ ′y(t) +
√

αη(t − T ′), (25b)

where the parameter α is defined by

α ≡
(

β ′

β

)2

. (26)

As before, the noise η(t) is characterized by η(t) = 0 and η(t)η(t ′) = Aδ(t − t ′)
(equation (6)). The similarity function S(τ) associated with equation (25), can be determine
analytically by a straightforward calculation. We get

S(τ) =
[√

γ ′

αγ
+
√

αγ

γ ′ − 4
√

γ γ ′

(γ + γ ′)
exp[−γ̄ |τ − �|]

]1/2

, (27)

where we have defined the delay time mismatch

� ≡ T − T ′, (28)

and the rate γ̄ is defined as

γ̄ ≡
{

γ for τ > �

γ ′ for τ < �.
(29)

We note that due to the normalization constants in the definition of the similarity function
equation (10), the final expression equation (27) does not depend explicitly on the chaotic force
amplitude A. The similarity function only satisfies S(0) = 0, when the transmitter–receiver
parameters are exactly the same. In this situation, the manifold x(t) = y(t) characterizes the
stationary regime.

4.1. Parameter mismatch in discrete delay maps

The previous results can be extended to the coupled maps obtained from the evolution
equation (24) after a first-order Euler integration, i.e.,

xn+1 = axn + bf
(
xn−n0

)
, (30a)

yn+1 = a′yn + b′f
(
xn−n′

0

)
. (30b)

Here, the transmitter and receiver parameters of both, the continuous and the discrete time
evolutions, must be related as

γ = 1 − a

δt
, β = b

δt
, T = n0δt, (31a)

γ ′ = 1 − a′

δt
, β ′ = b′

δt
, T ′ = n′

0δt, (31b)

where δt is the characteristic discretization time step. For the discrete maps, the similarity
function equation (18) reads

Sm =
⎡
⎣
√

(1 − a′2)
α(1 − a2)

+

√
α(1 − a2)

(1 − a′2)
− 2

√
(1 − a2)(1 − a′2)

(1 − aa′)
ā|m−m0|

⎤
⎦

1/2

, (32)

where we have defined

m0 ≡ n0 − n′
0, α =

(
b′

b

)2

, (33)
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Figure 4. Similarity function of the coupled delay maps equation (35) (circles). The parameters
are n0 = 15, a = 0.9, b = 3 and n′

0 = 20, a′ = 0.8, b′ = 5. The line corresponds to the
fitting equation (27) joint with the mapping equation (31) (with δt = 1), indistinguishable from
equation (32). The inset corresponds to a realization of xn (full line), and yn (dotted line).

and the ‘dissipative rate’

ā ≡
{
a for m > m0

a′ for m < m0.
(34)

Note that under the mapping equation (31), the definition of the parameter α in equation (33)
is consistent with equation (26).

4.2. Numerical results

Here we consider the coupled chaotic maps

xn+1 = axn + b cos
(
xn−n0

)
, (35a)

yn+1 = a′yn + b′ cos
(
xn−n′

0

)
. (35b)

In the inset of figure 4, we show a characteristic realization of the emitter and receiver variables.
By averaging over different realizations (≈104), we get the similarity function. We note that
due to the specific values of the characteristic parameters, the receiver ‘synchronizes’ with
the ‘past’ of the transmitter variable. In fact, Sm attains its minimal value at m0 = −5.

Furthermore, due to the difference in the parameters b and b′, the amplitude of the receiver
fluctuations are bigger than those of the transmitter.

In contrast with figure 2, here the similarity function is not symmetrical around its minimal
value. This asymmetry has its origin in the mismatch between the ‘dissipative rate’ parameters
a and a′.

Clearly, the Langevin approach provides a very well fitting to the numerical simulations.
Furthermore, it allows us to characterize the influence of the parameters mismatch on the
synchronization of the transmitter and receiver variables. The analytical quantification of this
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effect can be obtained from the similarity function equation (27) (or equation (32)) evaluated
at the origin

S(0) =
[√

γ ′

αγ
+
√

αγ

γ ′ − 4
√

γ γ ′

(γ + γ ′)
exp[−γ̄ |�|]

]1/2

. (36)

By a direct inspection of this expression, we realize that the dependence of S(0) on the prime
parameters is non-monotonous, S(0) develops different minima when varying the receiver
parameters. In agreement with the results of [43], assuming that it is possible to adjust a given
receiver parameter, the previous expression allows us to choose the best value that maximizes
the synchronization phenomenon.

5. Synchronization of second-order nonlinear delay differential equations

In the previous sections, we analyzed the phenomenon of chaotic synchronization for dynamics
generated by first-order delay equations. Nevertheless, second-order delay differential
equations also arise in the description of real experimental setups. By second order we
mean equations whose linear dynamical contributions are equivalent to second-order (time)
derivative evolutions. Here, we demonstrate that the Langevin approach also works in that
case.

Following [43] we consider the evolution

x(t) +
ẋ(t)

γ
+

1

θ

∫ t

0
x(s) ds = β cos2[x(t − T )] + ξx(t), (37)

y(t) +
ẏ(t)

γ ′ +
1

θ ′

∫ t

0
y(s) ds = β ′ cos2[x(t − T ′)] + ξy(t), (38)

which describe synchronization in a set of coupled electro-optical laser devices. The integral
contributions proportional to (1/θ) and (1/θ ′) indicate that the linear evolutions defined by
the left-hand side of equations (37) and (38) are equivalent to a set of second-order derivative
differential equations. In addition to the parameters mismatch, we also consider the action
of external additive noises ξx(t) and ξy(t), whose mutual and self-correlations are defined by
equation (9). In order to simplify the final expression here we do not consider any mismatch
in the phase of the chaotic forces (see footnote 3).

Under the same conditions than in the previous sections, we assume that x(t) and y(t),

in the long-time limit, attain the fully-developed chaos regime, allowing us to replace the
nonlinear delay forces by noise contributions with the same time arguments, delivering

x(t) +
ẋ(t)

γ
+

1

θ

∫ t

0
x(s) ds = η(t − T ) + ξx(t), (39a)

y(t) +
ẏ(t)

γ ′ +
1

θ ′

∫ t

0
y(s) ds = √

αη(t − T ′) + ξy(t), (39b)

where as before, α = (β ′/β)2. The correlation of η(t) is again defined by equation (6), and
we take η(t) = 0. Note that in spite that the nonlinear contribution cos2[x] is always positive,
when {θ, θ ′} < ∞, the second-order linear evolution introduces self-dynamical oscillations
that imply that its effective action averaged over realizations (or its stationary time average)
must be taken as zero. This property breaks down when the integral contributions are absent,
i.e., in the limit θ = θ ′ = ∞.
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The Green’s functions associated with the linear evolutions equation (39) can be obtained
straightforwardly in the Laplace domain, being defined by the addition of two exponential
functions. After integrating formally both equations for each realization of the noises, it
follows

lim
t→∞〈x2(t)〉 = γ

2
(A + Axx), (40a)

lim
t→∞〈y2(t)〉 = γ ′

2
(αA + Ayy). (40b)

The similarity function (equation (10)) reads

S(τ) =

⎧⎪⎨
⎪⎩
√

γ

αγ ′
(
1 + Axx

A
)

+
√

αγ ′
γ

(
1 + Ayy

αA
) − 4μ

[
(τ − �) + Axy√

αA(τ)
]

(
1 + Axx

A
)1/2(

1 + Ayy

αA
)1/2

⎫⎪⎬
⎪⎭

1/2

. (41)

Here, � = T − T ′. The function (t) is defined as

(t) = e− 1
2 γ̄ |t |

[
cosh(�̄|t |/2) − ν̄

γ̄

�̄
sinh(�̄|t |/2)

]
, (42)

where the dissipative rate γ̄ is defined by

γ̄ ≡
{

γ if t > 0
γ ′ if t < 0.

(43)

For t > 0, the frequency �̄ reads

�̄ ≡ γ

√
1 − 4

θγ
, if t > 0, (44)

while the dimensionless parameter ν̄ is

ν̄ ≡ 1 − 2

θ(θ + θ ′)

(
θ

γ
− θ ′

γ ′

)
, if t > 0. (45)

For t < 0, both � and ν are defined by interchanging θ ↔ θ ′ and γ ↔ γ ′ in the previous
expressions. Finally, in equation (41), we have also defined the dimensionless parameter

μ ≡
√

γ γ ′(θ + θ ′)
(θγ ′/θ ′γ ) + [(θ + θ ′)(γ + γ ′) − 2] + (θ ′γ /γ ′θ)

, (46)

which is symmetric in the emitter and receiver parameters.
In order to check the validity of the previous approach, we consider the discrete maps

associated with equations (37) and (38) by Euler integration

xn+1 = axn − ω

n∑
j=0

xj + b cos2 (xn−n0

)
+ ξx

n , (47a)

yn+1 = a′yn − ω′
n∑

j=0

yj + b′ cos2 (xn−n′
0

)
+ ξy

n . (47b)

The (transmitter) parameters mapping reads

γ = (1 − a)

δt
, θ = δt

(1 − a)

ω
, β = b

(1 − a)
. (48)

15



J. Phys. A: Math. Theor. 41 (2008) 445001 A A Budini

Figure 5. Similarity function of the coupled delay maps equation (47) (circles) without noises,
Axx = Ayy = Axy = 0 and without mismatching, n′

0 = n0, a
′ = a, b′ = b and ω′ = ω.

The parameters are n0 = 20, a = 0.9, b = 3 and ω = 0.05. The line corresponds to the fitting
equation (41) under the mapping equation (48) (with δt = 1). The inset corresponds to the
stationary probability distribution of the process xn.

The same relations are valid for the prime (receiver) parameters. The noises ξx
n and ξ

y
n ,

joint with the corresponding mapping for their amplitudes are defined below equation (16).
The chaotic force amplitude of the continuous and discrete time evolutions are related by
A = A/δt.

In figure 5 we plot the similarity function (equation (18)) associated with the coupled
maps equation (47) in the absence of parameters mismatch and without the external noises.
The analytical result equation (41), under the mapping equation (48), provides an excellent
fitting of the numerical results. In contrast with the previous sections (see for example
figure 1), here the similarity function develops an oscillatory behavior, its origin can be
associated with the integral contributions in the dissipative dynamics of equations (37) and
(38). Their characteristic frequency follows from equation (44).

In order to check the achievement of the fully-developed chaos regime4, in the inset we
show the stationary probability distribution of xn. Consistently, this distribution can be fitted
with a Gaussian distribution.

In figure 6, for other set of characteristic parameters, we plot the similarity function in the
presence of parameter mismatch and external noise sources. As in the previous case, the fitting
equation (41) correctly match the numerical results. The effective chaotic force amplitude
is A ≈ 1.2. The asymmetry of Sm around its minimum value follows from the parameter
mismatch between the evolution of xn and yn.

4 Taking the experimental parameters of [43], the dynamics goes beyond the Gaussian chaos regime. Our formalism
may also be used as an estimator of the statistical properties in this regime. Nevertheless, the quality of the fitting
departs from that showed in the figures of this paper. On the other hand, from equation (39), it is possible to write
the Fourier transform (t → w) of x(t) as x(w) = {iγw/[−w2 + iγw + γ /θ)]}[η(w) + ξx(w)], and a similar one
for y(w). Then, the band-pass filter approximation introduced in [43] can be read as a rough approximation to these
expressions.
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Figure 6. Similarity function of the coupled delay maps equation (47) (circles) with parameters
mismatch and under the action of external noises. The parameters are n0 = 20, a = 0.98,

b = 3, ω = 0.01, and n′
0 = 22, a′ = 0.95, b′ = 4, ω′ = 0.0125. The noise parameters are

Axx = Ayy = 0.0225 and Axy = 0. The line corresponds to the fitting equation (41) joint with the
mapping equation (48) (with δt = 1). The inset corresponds to the similarity function in absence
of noises and without mismatching.

In the inset, maintaining the parameters corresponding to the evolution of xn, we plot
the similarity function in the absence of both, parameters mismatch and the external noise
contributions. In this case, the chaotic force amplitude (determine from equation (40)) is
A ≈ 1.

As in the previous section, a remarkable aspect of our analytical results is that they allow
us to know the influence of different realistic effects on the chaotic synchronized manifold.
For example, for a given set of fixed parameters, which may include the amplitude of the
external noises, one can determine the value of the rest of the parameters that minimizes the
similarity function at τ = 0, giving rise to a maximization in the degree of synchronization
between the emitter and receiver variables. This kind of analysis follows straightforwardly
from our analytical results.

6. Conclusions

In this paper, we have characterized the phenomenon of chaotic synchronization in scalar-
coupled nonlinear time delay dynamics. Our formalism relies in recognizing that in a fully-
developed chaos regime, the trajectories associated with a broad class of hyperchaotic attractors
are statistically equivalent to the realizations of a linear Langevin equation. This equivalence
can be established when the function that defines the driven chaotic delay force is an oscillatory
one, such that its dynamical action can be represented by a delta-correlated noise. Given this
Langevin representation, the coupled nonlinear delay evolutions, where the phenomenon of
chaotic synchronization happens, are replaced by a set of linear stochastic equations where
the noise that represents the chaotic force maintains the corresponding time arguments. The
statistical properties of the Langevin equations can be obtained analytically, providing an
excellent estimation of the stationary statistical properties of the synchronized manifold.
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Using the Langevin representation, we analyzed the phenomenon of anticipated
synchronization in the presence of external additive noises. We also characterized the effect of
parameters mismatch in a hyperchaotic communication scheme. Second-order delay equations
associated with an electro optical device were also characterized. The analytical predictions
of the Langevin approach correctly fit numerical simulations in discrete-coupled nonlinear
delay maps associated with the corresponding continuous time evolutions.

In all cases, the degree of synchronization (between the master–slave or emitter–receiver
variables) was characterized through a similarity function, defined in terms of the correlation
between the synchronizing systems. When the departure from perfect synchronization is due
to a parameter mismatching, the fitting to the similarity function does not involve any free
parameter. When the action of external noises is considered the fitting depends on the effective
chaotic force amplitude.

Our results are interesting from both, theoretical and experimental point of view. From
our analytical expressions it is possible to evaluate under which conditions a given undesired
effect can be minimized by controlling the rest of the parameters. On the other hand, in the
context of hyperchaotic communication schemes, while high-dimensional systems increase the
complexity of the masking signals, our results show that the corresponding statistical properties
may adopt a simple analytical form. In fact, by measuring the similarity function our results
allow us to infer the value of some of the characteristic parameters of the hyperchaotic delay
dynamics.

The present study may be continued in different relevant directions such as the extension of
the Langevin representation beyond the fully-developed chaos regime (non-Gaussian chaos) as
well as for non-scalar chaotic dynamics. Furthermore, the characterization of the dependence
of the effective chaotic force amplitude with the external noise parameters is an open interesting
issue.
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